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A typical rainfall scenario contains tens of thousands of dynamic

sound sources. A characteristic of the large-scale scene is the strong
randomness in raindrop distribution, which makes it notoriously

expensive to synthesize such sounds with purely physical methods.
Moreover, the raindrops hitting different surfaces (liquid or various

solids) can emit distinct sounds, for which prior methods with

unified impact sound models are ill-suited.
In this paper, we present a physically-based statistical simulation

method to synthesize realistic rain sound, which respects surface

materials. We first model the raindrop sound with two mechanisms,
namely the initial impact and the subsequent pulsation of entrained

bubbles. Then we generate material sound textures (MSTs) based

on a specially designed signal decomposition and reconstruction
model. This allows us to distinguish liquid surface with bubble

sound and different solid surfaces with MSTs. Furthermore, we
build a basic rain sound (BR-sound) bank with the proposed

raindrop sound clustering method based on a statistical model, and

design a sound source activator for simulating spatial propagation
in an efficient manner. This novel method drastically decreases

the computational cost while producing convincing sound results.
Various experiments demonstrate the effectiveness of our sound
simulation model.
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1 INTRODUCTION

Rain sound, as a common environmental sound, is widely
used in virtual scenes such as animated movies and computer
games. It can greatly enhance one’s sense of immersion in vir-
tual scenes. There are two obvious characteristics of a rainfall
scenario: large scale with a large number of raindrops, and
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Fig. 1. Audiovisual simulation of walking along a country road in
the rain. Frames A and B illustrate two positions of the listener. From
A to B, as the listener gets closer to the street lights, the metal sound
effects become more and more apparent. Our method is able to capture
this dynamic change of rain sound as shown in the spectrogram on
the bottom row.

the heterogeneity of interaction surfaces in the scene, which
make synthesis of accurate rain sound rather computationally
demanding. In this paper, we propose a method that can effi-
ciently resolve these challenges and synthesize realistic surface
material-aware rain sound. We show an example produced by
our sound synthesis pipeline in Figure 1. (See more in § 6.)

Recent advances in the sound simulation have enabled the
synthesis of rain sound and these methods can be classi-
fied into two categories, non-physically-based methods and
physically-based methods. The non-physically based methods
usually employ signal processing to adjust the recorded sound
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for authenticity. However, for the methods in this category,
as discussed in [Verron and Drettakis 2012; Zita 2003], there
are two major limitations: 𝑖) the indirect correspondence with
the parameters of the physical animation model, and 𝑖𝑖) the
need for artificial adjustment. Both limitations can be over-
come by physically-based methods with direct matching of
physical parameters. Thus, an increasing amount of research
effort [Chadwick and James 2011; Langlois et al. 2016; Liu
and Yu 2015; Moss et al. 2010; Yin and Liu 2018; Zheng
and James 2009] has been devoted to this field. However,
due to the vastly different formation mechanisms, the generic
physically-based sound synthesis methods mentioned above
are ill-suited for the synthesis of rain sound. Targeting rain
sound, Zita [2003] designed a physical model by analyzing
the relationship between raindrop kinetic energy and velocity.
While the rain sound model in [Zita 2003] is able to auto-
matically synchronize with rainfall animation, it is a unified
physically-based impact sound model which is not computa-
tionally feasible for large virtual environments. Moreover, it
does not distinguish surfaces of different materials. In con-
trast, we propose a physically-based statistical simulation
method to synthesize rain sound. In comparison to previous
approaches, the advantages of our method include that the
proposed rain sound model ensures distinguishable sound for
different surface materials through different mechanisms, and
our simulation is highly efficient owing to the combination of
physical sound synthesis theory and statistical mechanisms.
To achieve more natural rain sound, we augment the rain

sound model in [Zita 2003] which only took impact effect of
raindrops into consideration. The studies in [Pumphrey et al.
1989] suggest that the impact of a water drop can produce two
distinct sounds: one from the initial impact and another from
bubble oscillation. The follow-up work [Guo and Williams
1991; Prosperetti et al. 1989] also indicates that the bubble
sound should not be ignored since bubbles are responsible for
the 14kHz spectral peak of underwater sound by rain. Based
on these theoretical observations, we have further differen-
tiated the composition of rain sound and propose a novel
sound model for raindrops with two separate mechanisms:
first, the initial impact sound, occurs for every impact; second,
the bubble oscillation, which, when it occurs, is a stronger
acoustic source than the initial impact, but does not occur
for every raindrop [Pumphrey et al. 1989] or in every scene.
Furthermore, to distinguish different solid surface materials,
we enrich the impact sound with features extracted from real
rain sound examples based on a modified Variational Mode
Decomposition and Spectral Variance (VMD-SV) method to
reconstruct the material sound textures (MSTs). Consequent-
ly, the new physically-based acoustic equation contains both
bubble sound and impact sound for raindrops, and achieves a
higher degree of realism.

To improve the throughput of the computational bottleneck
for a large number of dynamic sound sources in rainfall scenes,
we take advantage of both physically-based sound synthesis
theory and statistical mechanisms on the overall rain sound.
Fortunately, there have already been several attempts [Guo

and Williams 1991; Medwin et al. 1992; Pumphrey and El-
more 1990] to discover the relationships between rain sound
level and attributes of rain, such as distribution of raindrops,
and rainfall rate. Medwin et al. [1992] built the distribution of
different size raindrops for rainfall at different scales. However,
these methods just summarized some statistical models em-
pirically. Nevertheless, they made it possible to establish the
rain sound model through statistics, which can thereby avoid
the expensive matching process in purely physically-based
methods. Along the same line, we focus on rain sound syn-
thesis through a physically-based statistical technique. The
statistical model for generating sound clips is then used to
alleviate the high computational complexity of the physical
models. We refer to these sound clips as basic rain sounds
(BR-sounds) in the rest of the paper. We call the collection
of available BR-sounds and MSTs as the BR-sound bank. To
further decrease the computation time, based on the similari-
ty among sound sources in rainfall scenarios and the limited
human auditory distance, we propose a modified bidirectional
sound transport algorithm with a specially designed sound
source activator instead of painstakingly calculating all the
rain sound sources in a large virtual environment. The sound
source activator is devised based on the number of raindrops
and the position of the listener with a novel material shader to
synchronize the MSTs. Such an activator drastically reduces
the simulation cost.

The main contributions of our work can be summarized as
follows:

∙ We propose a hybrid physical and statistical rain sound
synthesis system, which can smoothly synchronize with
3D animations. It is thus possible to strike a balance
between computation cost and quality using the short
sound clips built into our BR-sound bank with clustered
physical parameters and a statistical model.
∙ We propose a novel rain sound model based on two
physical mechanisms, which makes it possible to syn-
thesize sound for surfaces of different materials. The
solid and liquid surfaces can be distinguished by the
impact model and the bubble oscillation model, and the
solid surfaces are further differentiated with a newly
designed VMD-SV method.
∙ A visual-to-audio coupling scheme is designed to signif-
icantly decrease the simulation cost. The novel sound
source activator in the coupling scheme clusters the
number of raindrops and the position of the listener as
variables for efficient spatial propagation.

2 RELATED WORK

Sound models have long been studied. With the advances in
computer hardware, in recent years, ever more attention has
been drawn to sound synthesis in virtual environments.

2.1 Rain Sound Anatomy

There were numerous experiments on the various factors influ-
encing on the audio frequencies in rain sound, including the

ACM Trans. Graph., Vol. 38, No. 4, Article 123. Publication date: July 2019.



Physically-based Statistical Simulation of Rain Sound • 123:3

distribution of raindrops, rainfall rate and other attributes
in rainfall scenes with different scales. Marshall and Palmer
[1948] pointed out that the size of each raindrop is inverse-
ly proportional to the number of raindrops in rainfall with
different scales through experimental observation. Later, vari-
ous studies on rain sound were conducted; sound radiation
from large raindrops [Jacobus 1991], a raindrop sound pro-
duction analytical model [Longuet-Higgins 1990], underwater
rain noise [Nystuen 1986], rainfall rate [Medwin et al. 1992],
temperature [Nystuen 1991] and the effect of salinity [Scofield
1992] were all taken into consideration.

Although previous works only analyzed and investigated
the audio frequencies of rain sound, they provided us with
a realistic model on the distribution of raindrops. With the
studies mentioned above, we had the basic understanding of
rain sound frequencies. Furthermore, the characteristics of
rain sound are studied experimentally in [Pumphrey et al.
1989], which argued that the bubbles entrained in liquid by
the impact of raindrops should not be ignored. Therefore, the
method we propose in this paper for generation of BR-sounds
with both bubble sound and impact sound is consistent with
the observations in these experimental works.

2.2 Sound Simulation

There have been works in the graphics community in both cat-
egories of sound simulation, e.g., [Cheng and Liu 2019; Farnell
2010; Misra et al. 2006; Strobl et al. 2006] on non-physically-
based methods, and [Cook 1997; Langlois et al. 2016] on
physically-based methods. Non-physically-based methods usu-
ally rely on recorded audio samples as supplemental input.
Since the features of sound textures are extracted from real
sound examples, this type of methods greatly depend on the
given recordings. With advanced texture generator frame-
works [Strobl et al. 2006], the inherent quality of the recorded
sounding materials could be captured and the resulting sound-
s closely resemble the real-world recordings. For instance, Ren
et al. [2013] proposed a way to extract perceptually salient
features from audio examples, which could then be used to
automatically determine material parameters. For rain sound
synthesis, Verron and Drettakis [2012] proposed a signal-based
method to reproduce environmental sounds that are synthe-
sized from five physically-inspired “sound atoms”. Due to
the direct extraction of features from recording signals, the
algorithm is highly efficient. However, the geometry of the 3D
scene and the listener location within the scene have a clear
effect on the rain sound, which cannot be easily captured by
granular synthesis [Roads 1988] combined with recordings,
due to the lack of information corresponding to spatial fac-
tors. Thus, they are better suited for scenes with 1D listener
movements.
As a sharp departure from non-physically based methods,

Cook [1997] introduced the physically informed stochastic
event modeling (PhISEM) algorithm for the synthesis of per-
cussive sound. Later, Cook developed a system for automatic
analysis and parametric synthesis of walking sound [Cook

2002]. For raindrop sound, Zita [2003] designed a physical
model for raindrop sound by analyzing the relationship be-
tween the kinetic energy of a raindrop and its velocity. For
the related physically-based liquid sound synthesis, a method-
ology was developed in [Doel 2005]. Recently, the synthesis of
liquid sound has been improved progressively by considering
bubble creation rates [Zheng and James 2009], bubble size
distributions [Moss et al. 2010], and morphology [Langlois
et al. 2016]. These physically-based methods can produce
realistic sounds matching visual animations, but as the real
physical process is complex, the sound rendering techniques
are generally computationally intensive.

Most related to ours are the methods in [Verron and Dret-
takis 2012; Zita 2003] which can effectively synthesize rain
sound. However, the method in [Zita 2003] is based on phys-
ical principles, which is a computationally inefficient repre-
sentation in the sequential form. Moreover, the simulation
model only takes impact effect of raindrops into consideration,
which cannot distinguish surfaces of different materials. The
method in [Verron and Drettakis 2012] is highly efficient, yet
the signal-based sound model is less synchronized with the
particle animation. Since rain sound has high repeatability
and randomness, just using the traditional physically-based
method may be redundant with unnecessary repeated calcula-
tions, when combining all components to produce rain sound
synchronized with the animation. In contrast, our method
aims at efficient rain sound synthesis with reasonable syn-
chronization with animations, by leveraging the statistical
rain sound analysis and previous physically-based methods
developed based on computational fluid dynamics.

2.3 Sound Propagation

Previous work on sound propagation can be classified into
two broad categories, namely wave-based methods [Mehra
et al. 2013; Raghuvanshi and Snyder 2014; Thompson 2006;
Zhang et al. 2018] and geometric acoustic techniques [Cao
et al. 2016; Lentz et al. 2007; Schissler et al. 2014]. The wave-
based method can accurately simulate all acoustic effects yet
are limited to static scenes. Geometric acoustic techniques,
which are based on ray theory, provide an efficient solution
for dynamic scenes and multiple sources. Among them, Cao
et al. [2016] proposed a bidirectional sound transport algo-
rithm which can offer considerable speedup over prior sound
propagation algorithms.
Rainfall scenarios are particularly large dynamic scenes

with a large number of sound sources, for which geometric
acoustic techniques provide an ideal solution. Inspired by
the recent work [Cao et al. 2016], we also simulate the sound
propagation by bidirectional path tracing. Different from [Cao
et al. 2016], taking advantage of the similarity of sound sources
in rainfall scenarios and the limited hearing range of human
auditory, we design a dynamic sound source activator based
on the number of raindrops and the position of the listener
which is tailored to rainfall scenarios. This component enables
us to further speed up performance of the simulation.
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Fig. 2. System overview. Note that there are two main components in the framework, namely sound modelling and sound coupling with animation.
The blue block is the subsystem to generate the raindrop sounds and the generation procedure of BR-sounds and MSTs. The green block represents
the coupling process of rain sound and rainfall animations.

3 OVERVIEW

Figure 2 illustrates the whole framework of our method, which
is composed of two main ingredients, namely rain sound
modelling and sound synchronization.
In the sound modelling stage, we propose a new raindrop

acoustic model by analyzing two separate mechanisms, initial
impact and bubble oscillation. For simplifying the computa-
tion, after we build the raindrop acoustic function, we adapt
a statistical distribution based on previous studies [Marshall
and Palmer 1948; Medwin et al. 1992] to cluster and superim-
pose raindrop sounds in different parameter ranges. We refer
to the synthesized rain sound clips through the superposition
and clustering as BR-sounds and the collection of all the
BR-sounds as the BR-sound bank. To distinguish surfaces
of different materials, we generate MSTs with a designed
VMD-SV method and store them in the BR-sound bank.

In the synchronization stage, first, a particle simulation sys-
tem is used for the animation of rainfall. Then, the geometric
and kinematic properties, such as velocity and number of rain-
drops, listener trajectory, and object location, are exported
from the rainfall model. We utilize the above exported data
as the input of a sound source activator to model the rain
sound as area sources, thereby screening out a large amount
of repeated calculation. Moreover, the MSTs are added into
the blended sound through a material shader for enrichment.
We further elegantly smooth the resulting sound as post-
processing to obtain the final rain sound consistent with the
rainfall animation.

4 MODELLING RAIN SOUND

We start from the sound of a single raindrop to synthesize the
sound of the entire rainfall scene. In this section, we combine
physical principles and a statistical model to generate the
raindrop sound as the basis for BR-sound. To distinguish
surfaces of different materials, we design a VMD-SV method
to generate the MSTs. Finally, we build a BR-sound bank
with two components: BR-sounds and MSTs.

Fig. 3. Models for a raindrop. (a) is the process of a raindrop impacting
on the surface and the corresponding acoustic wave patterns. (b) shows
the variation of the entrained bubbles. (c) is a listener model and (d)
is a close-up view of the orange ellipse in (c).

4.1 Physical Model for Raindrop Sound Generation

What causes raindrop sound? The experiments in [Franz
1959] show that the sound generation process for raindrops
impacting a water surface can be divided into two stages,
an initial impact and the subsequent bubble formation. Fig-
ure 3(a) illustrates the raindrop sound with two sources and
their corresponding waveforms. The initial impact sound is
a sharp pulse while the bubble sound is a decaying sinusoid.
Inspired by previous work [Franz 1959; Guo and Williams
1991; Howe and Hagen 2011], we adjust and integrate the
physical models of the two stages to make them suited to 3D
rainfall simulators. For impacts on a solid surface, although
the splash may also contain bubbles, the bubble sound is
inaudible. Thus, the raindrop sound for a solid surface only
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contains an impact sound. We now introduce the two types
of raindrop sound models in detail.

4.1.1 Initial Impact. The four main characteristics of the
initial impact sound of a raindrop as shown by previous
studies [Franz 1959; Guo and Williams 1991] are:

(1) present for every raindrop impact,
(2) highly transient (short time scale),
(3) with an initial sound pressure amplitude 𝜌0𝑐0𝑉𝐼 , and
(4) with a radiation efficiency conforming to a dipole pat-

tern.

These observations underpin our proposed impact raindrop
sound model. Here, 𝜌0 is the density of water, 𝑐0 is the speed
of sound in water and 𝑉𝐼 is the normal impact velocity of a
raindrop. As the impact sound of a raindrop is highly transient,
it is difficult to obtain for both experimental observations and
numerical simulations. However, with the initial amplitude
and radiation efficiency, we can construct a modal acoustic
model with a large damping constant to approximate the
initial impact sound. Thus, the far-field initial impact raindrop
sound pressure is formulated as

𝑝𝐼(𝑟, 𝑡) =
𝑘2𝜌𝑐𝐷𝑆(𝑡)

4𝜋𝑟
𝑐𝑜𝑠𝜃𝑒−𝑖𝑘𝑟 (1)

where 𝜌 is the air density, 𝑐 is the speed of sound in air, 𝑟 is
the distance from a listener to the sound source, 𝑡 is time, 𝑘 is
the wavenumber, 𝜃 is the polar angle (as shown in Figure 3(c))
and 𝑖 is the imaginary unit. We define the dipole strength
𝐷𝑆(𝑡) = 0.05𝑄𝑆(𝑡) (0.05 represents the distance in the dipole
sound field geometry and the setting is based on experiments.)
and illustrate the dipole sound field geometry in Figure 3(d).
𝑄𝑆(𝑡) is given by

𝑄𝑆(𝑡) = 𝐴𝐼𝑒
−𝛽𝐼 𝑡𝑠𝑖𝑛(2𝜋𝑓𝐼𝑡) (2)

where the amplitude 𝐴𝐼 = 𝜌0𝑐0𝑉𝐼 , 𝛽𝐼 is the damping con-
stant and 𝑓𝐼 is the frequency (random assignment between
1kHz and 16kHz). Since previous studies have shown that
the impact sound frequency does not seem to follow a spe-
cific distribution, we sampled it with a uniform distribution.
As described above, 𝑉𝐼 is the raindrop impact velocity, for
which there is no theoretical precise calculation. However, as
noted in [Pumphrey and Elmore 1990], there is a connection
between the impact velocity 𝑉𝐼 and the terminal velocity 𝑉𝑇 .
Thereby, we approximate the impact velocity 𝑉𝐼 as

𝑉𝐼 = 𝑉𝑇

√︃
1− 𝑒𝑥𝑝(

−2𝑔𝑧
𝑉 2
𝑇

) (3)

where 𝑧 is the falling height of a raindrop. The terminal
velocity 𝑉𝑇 can be calculated from the raindrop diameter
𝑑 ∈ [0.1𝑚𝑚, 5.8𝑚𝑚] through a polynomial fit [Dingle and
Lee 1972]:

𝑉𝑇 =

⎧⎪⎪⎨⎪⎪⎩
−17.8951 + 448.9498𝑑+ 16.3719𝑑2 − 45.9516𝑑3,

𝑑 ≤ 1.4𝑚𝑚,
24.1660 + 448.8336𝑑− 75.6265𝑑2 + 4.2695𝑑3,

𝑑 > 1.4𝑚𝑚.

Fig. 4. Different damping constants and the corresponding waveforms.
The waveform for 𝛽𝐼 = 𝑓𝐼/0.5 resembles the typical short pulse of
impact sound.

Finally, we choose 𝛽𝐼 = 𝑓𝐼/0.5 as a reasonable underdamp-
ing (reducing the amplitude to 1/𝑒2 in 2 periods) through
experiments as illustrated in Figure 4.

4.1.2 Entrained Bubble. The oscillation of entrained bubbles
results from the raindrop impact. The associated acoustic
bubble sound pressure can be approximated by a decaying
sinusoid [Pumphrey and Elmore 1990],

𝑝𝐵(𝑟, 𝑡) =
𝐷𝐵𝑒

−𝛽𝐵 ·(𝑡−𝑟/𝑐)

𝑟
𝑐𝑜𝑠𝜃𝑒𝑖·(𝜔𝑡−𝑘𝑟) (4)

where 𝛽𝐵 is a damping constant, and 𝜔 is the angular reso-
nance frequency. The angular frequency is evaluated by the
Minnaert’s formula [Minnaert 1933]:

𝜔 =
1

𝑎0

√︂
3𝛾𝑃0

𝜌0
, (5)

where 𝑎0 is the bubble radius, 𝛾 is the specific heat of the air,
and 𝑃0 is the static pressure in the water around the bubble,
approximately equal to the atmospheric pressure.

There are three different mechanisms by which a bubble may
lose energy, namely viscous losses, thermal losses and acoustic
radiation losses. However, the viscous damping rapidly goes to
zero for any bubble with a radius > 0.1𝑚𝑚. The typical radius
for a bubble entrained by a raindrop impact is 0.16𝑚𝑚 ∼
0.47𝑚𝑚, so we only need to consider thermal damping and
radiative damping, which can be approximated as

𝛿th =

√︂
9𝜔(𝛾 − 1)2

8𝐺th
𝜋, 𝛿rad =

√︂
3𝛾𝑃0

𝜌0𝑐2
(6)

where 𝐺th is a dimensionless constant. Hence, the damping
constant can be calculated by 𝛽𝐵 = 𝜔(𝛿th + 𝛿rad)/2. We refer
the reader to Leighton [1994] for a comprehensive introduc-
tion.
The behavior of a bubble after it begins to oscillate was

well studied [Langlois et al. 2016; Leighton 1994; Moss et al.
2010; Zheng and James 2009], but it is less clear how it
gets the initial dipole strength 𝐷𝐵 . The initial energy of
the entrained bubbles by raindrop impacts is different from
the initial energy of other bubbles in a large body of water.
Pumphrey and Elmore [1990] noted that the raindrop size and
raindrop impact velocity would affect the sound of entrained
bubbles. After entrainment, the bubble is compressed to the
radius 𝑎0 by two additional pressures, the hydrostatic pressure
𝑃𝐻 = 𝜌𝑔ℎ and the Laplace pressure 𝑃𝐿 = 2𝜎/𝑎0, where 𝜎 is
the surface tension of water. Figure 3(b) illustrates the bubble
radius change after entrainment. Hence, following [Pumphrey
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Table 1. Distributions of raindrop diameters. The rainfall is divided
into three intensities, namely light rain, heavy rain and very heavy
rain. For each scale, we list the probability of the raindrop diameter
falling into one of the three intervals based on the data in [Medwin
et al. 1992].

raindrop diameter light
rain

heavy
rain

very heavy
rain

0.8𝑚𝑚 ∼ 1.1𝑚𝑚 84% 32% 24%
1.1𝑚𝑚 ∼ 2.2𝑚𝑚 16% 61% 52%

> 2.2𝑚𝑚 0% 7% 24%

and Elmore 1990], we construct the initial dipole strength
𝐷𝐵 as

𝐷𝐵 = 2ℎ𝑘(𝜌𝑔ℎ𝑎0 + 2𝜎), (7)

where ℎ is the vertical distance from the bubble to the water
surface, which is approximated as ℎ = (𝑔/3)1/4𝑑3/4𝑉𝐼

1/2 by
equating the gravitational potential energy to the kinetic
energy. Finally, we establish the relation between raindrop
diameter 𝑑 and bubble radius. Based on the data in [Pumphrey
and Elmore 1990], we can approximate the bubble radius as

𝑎0 = 15
√︁

𝑑
𝑉𝐼

.

4.2 Statistical Model for BR-sound Generation

To achieve plausible rain sound, we need to estimate the dis-
tribution of impacts and the entrainment of bubbles. However,
computing sound for each raindrop individually is notoriously
expensive. Instead, we present a statistical approach to gen-
erate rain sound in an efficient way. Even without knowing
frequency and impact velocity from the simulator, we can
approximately synthesize rain sound through raindrop radius
distribution, since all variables can be directly or indirectly
obtained through raindrop radius as shown in the previous
section. We cluster the raindrop sounds in small parameter
intervals into BR-sound based on statistical distributions as
the basic unit for the final rain sound. For a rainfall scene
at a particular time, we take into consideration both impact
and bubble sound sources as well as the distance from the
listener to the sound source. Hence, the BR-sound bank is
parameterized with two parameters: number of raindrops and
distance from listener.

With different rainfall intensities measured by precipitation
rate (light rain or heavy rain), the distribution of raindrop
diameter is different. We calculate the percentage of rain-
drop diameter distribution based on the data in [Medwin
et al. 1992] which is listed in Table 1. With the raindrop
radius distribution, we can generate BR-sounds by clustering
the raindrop sounds in small parameter intervals. However,
perhaps surprisingly, bubble sound does not occur for every
raindrop impact, but when the bubble oscillation occurs, it is
a stronger acoustic source than the initial impact. The obser-
vation data in [Pumphrey et al. 1989] shows that raindrops

within the diameter range 0.8𝑚𝑚 ∼ 1.1𝑚𝑚 can produce bub-
bles with every impact. Thus, we only calculate the bubble
sound for raindrops in this interval.
Considering the number of particles commonly used in

rainfall simulation, we subdivide the range of each BR-sound
into ten intervals. The starting value and end value of each
interval are represented as 𝑛𝑢𝑚𝑠, 𝑛𝑢𝑚𝑒 (for raindrop number
range) and 𝑑𝑖𝑠𝑠, 𝑑𝑖𝑠𝑒 (for distance range). The total raindrop
number range is 5000 ∼ 10000 and the length of each interval
is 500, i.e., 𝑛𝑢𝑚𝑠−𝑛𝑢𝑚𝑒 = 500. For each interval, such
as 𝐵𝑅[8000, 8500], we further divide it into ten intervals
according to the distance between the listener and the sound
source. The distance range is 0𝑚 ∼ 10𝑚 and each interval
length is 1𝑚 (𝑑𝑖𝑠𝑠−𝑑𝑖𝑠𝑒=1). Hence, each BR-sound can be
expressed in the form of 𝐵𝑅[8000, 8500, 2, 3], of which the
former two are the endpoints of the raindrop interval, and
the latter two denote the distance interval. We assign these
ten intervals as follows:

light rain: [5000,5500], [5500,6000], [6000,6500];
heavy rain: [6500,7000], [7000,7500], [7500,8000], [8000,8500];
very heavy rain: [8500,9000], [9000,9500], [9500,10000].
Moreover, since when a raindrop impacts on a solid surface,

the bubble sound is inaudible, we only calculate the impact
sound for solid surfaces. Thus, the BR-sound bank can be
divided into two parts, one for liquid surfaces 𝐵𝑅𝑙𝑖𝑞𝑢𝑖𝑑 and
the other for solid surfaces 𝐵𝑅𝑠𝑜𝑙𝑖𝑑. Specifically, the steps for
BR-sound generation can be described as follows:

(1) For each 𝐵𝑅[𝑛𝑢𝑚𝑠, 𝑛𝑢𝑚𝑒, 𝑑𝑖𝑠𝑠, 𝑑𝑖𝑠𝑒], select the median
of the interval as the total raindrop number 𝑁𝑀 .

(2) Calculate the number of raindrops in three intervals
according to 𝑁𝑀 and Table 1.

(3) Calculate the raindrop sounds of three intervals sep-
arately. The raindrop diameter and its distance are
selected randomly in the interval.

(4) Superpose all the impact sound and bubble sound for
𝐵𝑅𝑙𝑖𝑞𝑢𝑖𝑑 and all the impact sound for 𝐵𝑅𝑠𝑜𝑙𝑖𝑑.

In summary, there are 200 BR-sounds (100 for liquid surface
and 100 for solid surface) in the BR-sound bank. The total size
is 500KB × 200 ≈ 100MB. A 20-second long raindrop sound
clip (bubble or impact) takes about 3 seconds to synthesize.
Each 5-second long BR-sound generation time takes about
150 seconds to prepare.

4.3 VMD-SV Model for MST Generation

The BR-sound bank can cover the ranges of raindrop variation-
s for most scenes. However, to further distinguish the sound of
raindrops falling on surfaces of different materials, we propose
a VMD-SV (modified Variational Mode Decomposition and
Spectral Variance) method based on signal decomposition and
reconstruction to recognize and generate the MSTs (material
sound textures). Given a real rainfall recording, the impact
sound often mingles with the bubble sound, we therefore seek
a suitable way of decomposing the recording to reconstruct
the impact sound part.
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ALGORITHM 1: MST Generation

Input: A recording sound 𝑆𝑟𝑒𝑐

Output: The generated MST 𝑆𝑀𝑆𝑇 .

1: Find optimal decomposition number 𝐾 (Section 4.3.1);

2: {𝑢𝑘} ← 𝑉𝑀𝐷(𝑆𝑟𝑒𝑐,𝐾);

3: for each sub-signal 𝑢𝑘, 𝑘 = 1, , ...,𝐾 do
𝑓𝑘 = FFT(𝑢𝑘);

Calculate the variance 𝑣𝑘 of 𝑓𝑘;

end

4: Set threshold. 𝑇 ← max(𝑣𝑘)/10;

5: Initialize 𝑆𝑀𝑆𝑇 with a zero array;

6: for 𝑘 = 1 : 𝐾 do
if (𝑣𝑘 > 𝑇 );

then

𝑆𝑀𝑆𝑇 ← 𝑣𝑘/𝑇 × 𝑢𝑘 + 𝑆𝑀𝑆𝑇 ;

end

end

7: Normalize 𝑆𝑀𝑆𝑇 to [-1,1];

Yin and Liu [2018] utilized a modified Empirical Mode
Decomposition (EMD) algorithm to separate popping sounds
(to distinguish combustible material) successfully from fire
sound recordings, but the EMD algorithm is not suitable for
texture extraction of rain sound, because it is not robust to
white noise. However, rain sound contains more frequency
information, which is closer to white noise. Therefore, we
need a signal decomposition model that is far more resilient
to noise. We compared the influence on MST generation with
three different decomposition algorithms in § 6, and adopt-
ed VMD [Dragomiretskiy and Zosso 2014], a more robust
version of EMD, which can recursively decompose a random
complex signal into a series of Intrinsic Mode Functions (IM-
F, amplitude-modulated-frequency-modulated signals, set as
𝑢𝑘 in VMD). The main steps of our decomposition process
include:

(1) Initialize {𝑢1
𝑘}, {𝜔1

𝑘}, 𝜆1, 𝐾, 𝑛← 0
(2) 𝑛← 𝑛+ 1
(3) For 𝑘 from 1 to 𝐾

Utilize alternate direction method of multipliers (AD-
MM) to update 𝑢𝑛+1

𝑘 , 𝜔𝑛+1
𝑘 and 𝜆𝑛+1.

(4) Repeat the above steps until convergence.

Here {𝑢𝑘}:={𝑢1, ..., 𝑢𝐾} and {𝜔𝑘}:={𝜔1, ..., 𝜔𝐾} are short-
hand notations for the set of all modes and their center
frequencies, respectively. 𝜆 is the Lagrangian multiplier and
𝐾 is the number of modes. From our tests, we observed that
the value of 𝐾 has a direct influence on decomposition ac-
curacy. Hence, we design a procedural way to generate the
optimal decomposition number.

4.3.1 Optimal Decomposition Number. Manual determination
of 𝐾 heavily relies on user skills. If we always take a large
value for 𝐾, it will cause over-decomposition and produce sub-
signals that are useless. This will also obstruct the subsequent
restructuring process for MSTs. Therefore, we improve the
process of setting the 𝐾 value with a curvature calculation

which can automatically obtain the optimal decomposition
number 𝐾. We start with a small 𝐾 value, and increase it
until the decomposition converges. The procedure is listed
below:

(1) Initialize 𝐾 = 2, run the VMD algorithm.
(2) For each sub-signal 𝑢𝑘, after the Hilbert-Huang Trans-

form [Huang et al. 1998], calculate instantaneous fre-
quency and mean value m𝐼𝐹 .

(3) Fit quadratic curves with ([1 : 𝐾],m𝐼𝐹 ) and the method
of least squares, then calculate stationary point p𝑠𝑡𝑎.

(4) If p𝑠𝑡𝑎 > 𝐾, update 𝐾 ← 𝐾+1 and repeat Steps (2)
and (3). Else, the nearest integer value is selected as 𝐾
value.

When 𝐾 = 2, the quadratic curve fitting problem will have
infinite solutions, therefore, we perform the nearest neighbor
interpolation on ([1 : 𝐾],𝑚𝐼𝐹 ). Determining the optimal 𝐾
value through the stationary point is based on the observations
in our experiments.

4.3.2 SV-based Sound Reconstruction. After we obtain the
sub-signals {𝑢𝑘} with the optimal decomposition number 𝐾,
we are ready to reconstruct the signal for MST generation.
In order to determine effective signals in decomposed signals,
we choose a threshold 𝑇 based on the spectral variance 𝑣𝑘.
There are several classic features (zero-crossing rate, spectral
entropy, etc.) in signal processing for spectral analysis and
we choose spectral variance to measure the effectiveness of
sub-signals through our experiments. We first analyze the
spectrum of sub-signal 𝑢𝑘 and calculate the spectral variance
𝑣𝑘. Then, we choose the signals with a spectral variance above
the following threshold 𝑇 :

𝑇 = max
𝑘

(𝑣𝑘)/10. (8)

Algorithm 1 summarizes the entire MST generation process.

5 COUPLING WITH RAINFALL ANIMATION

There are two main computational challenges in direct cou-
pling of rainfall simulation with sound synthesis: 𝑖) a large
number of sound sources make the simulation costly at run-
time, 𝑖𝑖) there are no direct physical parameters to match
MSTs with the surfaces surrounding the listener. Focusing
on handling these challenges, we accelerate the coupling via
a novel sound source activator and solve the material issue
through a material shader. To further optimize the resulting
sound, we design a smoothing process, which can effectively
suppress amplitude jumps.

5.1 Sound Source Activation

With the input animation, we can get the time-varying raindrop-
numbers and listener (camera) positions. Since human audi-
tory distance is limited, we divide the regions in the rainfall
into two types: region nearby and region of far field, as shown
in Figure 5(a). The nearby region is a hemisphere with the
radius that is set as the maximum value covered by the BR-
sound bank. Sound sources in this area are superposed by
the following algorithm and the sound sources in the far field
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(a) (b) (c)

Fig. 5. The synchronization model in our method. (a) shows the ranges of two types of rain sounds, where the color change represents the
attenuation of the sound intensity, yellow indicates the strongest and black indicates the weakest. (b) illustrates the BR-sound source activation
model. (c) shows the BR-sound bank used in the synchronization process.

region are superposed directly with a fixed distance value
𝑟𝑓𝑎𝑟 = 10𝑚. To synthesize the synchronized rain sound for
the nearby region, we first need to determine the location and
amplitude of the BR-sound source and MSTs for each frame.
Since the BR-sound sources in rainfall scenarios are similar,
it is unnecessary to repeat calculating a large number of i-
dentical sound sources in the process of sound spatialization.
Hence, we design the sound source activator and propose a
material shader for MSTs to distinguish surfaces of different
materials.

5.1.1 BR-sound Activation. In rainfall scenes, since each rain-
drop is a sound source, the calculation is inevitably costly
due to the large number of raindrops. Thus, we build a BR-
sound bank with clustered parameters as introduced in § 4.
To synthesize sound synchronized with rainfall animation, we
need to determine when and where to activate the BR-sound
source. To achieve this goal, we introduce a BR-sound source
activation process to activate the corresponding sound source
over a time span.
First, we rasterize the ground surface of the rainfall ani-

mation to a grid. Thus, the impact surface of raindrops is
decomposed into a series of BR-sound source blocks as shown
in Figure 5(b) and the center of each block is taken as the
location of the BR-sound source (the blue or yellow circle in
Figure 5(b)). All the BR-sound sources are classified as active
BR-sound sources and candidate BR-sound sources. The BR-
sound block which contains the listener’s current position and
its four neighbouring BR-sound blocks are defined as active
sound blocks. Correspondingly, the BR-sound sources of all
active sound blocks are the active BR-sound sources and the
rest are candidate BR-sound sources.
The length (𝑏𝑙𝑜𝑐𝑘𝑙) of a BR-sound source block is deter-

mined by the BR-sound interval. When a listener is in a
BR-sound source block, the maximum distance from the four
neighbouring sound sources should be less than the maximum
value of the BR-sound interval, written as:√︀

(𝑏𝑙𝑜𝑐𝑘𝑙/2)2 + (3 𝑏𝑙𝑜𝑐𝑘𝑙/2)2 ≤ 10m. (9)

Fig. 6. Determining block length by the maximum distance between
the listener and the BR-sound source.

Since the maximum value of the BR-sound interval is 10m,
𝑏𝑙𝑜𝑐𝑘𝑙/2 ≈ 3m. Thus, the length of a BR-sound source block
is 6m (see Figure 6).
Next, we discuss how to determine the corresponding BR-

sound for each active BR-sound source. For the 𝑖𝑡ℎ frame,
we first calculate the distances between the listener and an
active sound sources 𝑗 (𝑗 = 1, 2, 3, 4, 5):

𝑟𝑖𝑗 =

√︁
(𝑃 (𝑥𝑖, 𝑦𝑖, 𝑧𝑖)− 𝑃𝑎(𝑥

𝑗
𝑖 , 𝑦

𝑗
𝑖 , 𝑧

𝑗
𝑖 ))

2 (10)

where 𝑃 (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) (and 𝑃𝑎(𝑥
𝑗
𝑖 .𝑦

𝑗
𝑖 , 𝑧

𝑗
𝑖 )) represent the positions

of the listener (and active sound source 𝑗, respectively) at
the 𝑖th frame. The two numbers, distance 𝑟𝑖𝑗 and raindrop
number 𝑁 , can uniquely determine a BR-sound as shown
in Figure 5(c). Finally, based on the position and BR-sound
for each active BR-sound source in each frame, we can gen-
erate the final BR-sound through the bidirectional sound
transport algorithm [Cao et al. 2016]. As the position of the
listener is continuous in time, we found it sufficient to update
the active BR-sound source data every ten frames through
experimentation.

5.1.2 Material Shader. When the raindrops impact on sur-
faces of different materials, the rain sound generated can differ.
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To distinguish rain sounds for surfaces of distinct materials,
we introduce the material shader to enrich the rain sound.
Since the MSTs are generated from recordings, they do not
contain available physical parameters (like the distance and
raindrop number for BR-sounds) for matching the animation.
Thus, the activation of MSTs needs to address two main
challenges:

(1) A strategy needs to be designed to synchronize the
MSTs with the final BR-sound. The core issues are
that where MSTs should be added and how long their
durations should be.

(2) The amplitude range of the input MSTs should be
tuned to a scale balanced with the BR-sound. The
main obstacle is the absence of physical parameters for
matching.

The solution to the first problem is based on our activation
process. When an activated BR-sound source block overlaps
with objects in the scene (see Figure 5(b)), the material shader
corresponding to the building is activated. Therefore, the
duration of a material shader is from the first appearance of an
object in an active BR-sound source block to its deactivation.
The position of the material sound source is chosen as the
center coordinates of the object. Thus, the distance between
an object and listener is

𝑟𝑜 =
√︀

(𝑃 (𝑥𝑖, 𝑦𝑖, 𝑧𝑖)− 𝑃𝑏(𝑥𝑖, 𝑦𝑖, 𝑧𝑖))2 (11)

where 𝑃𝑏(𝑥𝑖.𝑦𝑖, 𝑧𝑖) represents the position of the MST sound
source at the 𝑖th frame.
To resolve the second problem, we scale the amplitude

range of an MST as follows:

𝑀𝑆𝑇 ′ = 𝑀𝑆𝑇 ×𝐴𝐵𝑅/𝐴𝑀𝑇𝑆 (12)

where 𝑀𝑆𝑇 ′ represents the final MST after scaling, 𝑀𝑆𝑇
refers to the original sound texture, 𝐴𝐵𝑅 indicates the average
amplitude of the BR-sound in the same activated BR-sound
source block and 𝐴𝑀𝑇𝑆 is the average amplitude of the MST.
Unlike the smoother change of BR-sound due to the multiple
similar sound sources, MST has to be updated frame by frame
with the bidirectional sound transport algorithm [Cao et al.
2016].

In summary, the synchronization process involves the fol-
lowing steps:

(1) Rasterize the ground surface of the input animation.
(2) Update the active BR-sound source blocks according to

the input animation.
(3) Iterate through the active sound sources and calculate

distances between the listener and active sound sources.
(4) Calculate duration and amplitude range of MSTs.
(5) Implement the sound propagation process and generate

the final rain sound 𝑟𝑎𝑖𝑛(𝑡) by superposing final BR-
sound and final MSTs.

5.2 Smoothing

Since the final rain sound is stitched from the BR-sounds,
when the number of raindrops varies greatly in the scene,

Fig. 7. Comparison among different smoothing methods. We compare
the envelope curve and results of four smoothing methods in (a). The
two best results are further compared in (b), where the blue circles
represent break points. The final smoothing result and the envelope
curve are presented in (c).

Table 2. Physical constants and their values in our simulations.

Parameter Value Description

𝑔 9.8 𝑚/𝑠2 gravitational acceleration
𝐺th 1.6 ×106𝑠/𝑚 thermal damping constant
𝑐 343 𝑚/𝑠 sound speed in air
𝑐0 1497 𝑚/𝑠 sound speed in water
𝜌 1.29 𝑘𝑔/𝑚3 air density
𝜌0 1000 𝑘𝑔/𝑚3 water density
𝛾 1.4 specific heat ratio of air
𝑃0 101.325 𝑘𝑃𝑎 atmospheric pressure

there can be a sense of splicing. To avoid the amplitude
discontinuity, we have smoothed the final rain sound. We first
calculate the envelope of the final rain sound with an efficient
nonlinear low-pass filter proposed in [Peltola et al. 2007]:

𝑒(𝑛) = (1− 𝑏(𝑛))|𝑥(𝑛)|+ 𝑏(𝑛)𝑒(𝑛− 1) (13)

where 𝑛 stands for the current frame number, 𝑥(𝑛) is the
rectified input, 𝑒(𝑛 − 1) is the previous output of the fil-
ter, 𝑏(𝑛) is the regulating parameter that combines previous
output 𝑒(𝑛 − 1) and current input 𝑥(𝑛). The value of 𝑏(𝑛)
depends on whether the input value goes down or not, in
the former case it is 𝑏𝑑𝑜𝑤𝑛 = 0.995, and in the latter case it
is 𝑏𝑢𝑝 = 0.8. There can be jumps in the envelope curve of
synthesized sound (see the yellow curve in Figure 7). Thus,
we tried four popular smoothing algorithms, namely Gaussian
smoothing, polynomial fit smoothing, exponential smoothing
and box smoothing. We found that the polynomial fit smooth-
ing and box smoothing can achieve better performance for
our rain sound. As shown in Figure 7(b), we found that the
box smoothing method has better effects with large slopes
(left dashed box) and the polynomial fit smoothing method
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(a) (b)

(c) (d)

Fig. 8. Synthesized rain sound that changes with the number of raindrops and the movement of camera. In each group, the top row shows two
animation frames and the bottom row demonstrates the corresponding spectrogram of each frame. The parameters of animation are shown at the
bottom left corner of each frame.

Table 3. Timing for experiments with different domain sizes.

Example Domain size (m) Length
(s)

Our total cost
without SSA (s)

Our total cost
with SSA (s)

Zita’s [2003] cost (s) Speedup

DNR (light rain) 8 × 8 × 8 10 0.261 0.253 11.241 44×
DNR (medium rain) 8 × 8 × 8 10 0.273 0.272 15.178 55×
DNR (heavy rain) 8 × 8 × 8 10 0.235 0.231 20.112 87×

DPL (lake) 20 × 12 × 20 15 0.379 0.362 30.195 83×
DPL (block) 40 × 50 × 20 20 0.842 0.527 50.142 95×
DPL (street) 140 × 19 × 19 25 1.116 0.641 62.884 98×

DSM (country road) 29 × 29 × 26 16 0.615 0.413 37.334 90×

has better effects with small slopes (break points in right
dashed box). Thus, we calculate the resulting curves for both
methods, and compute their intersections. Then we choose to
use one of the curve segments for each interval formed by the
intersections based on a simple rule:

(1) if the envelope contains a slope > tan(60∘), use box
smoothing;

(2) otherwise, use polynomial fit.

Figure 7(c) presents the final smoothing curve and the original
envelope curve, which shows that the piecewise smoothing
algorithm can effectively generate ideal results. Then we can
get the smoothed rain sound based on the smoothed amplitude.
In § 6, we show the waveforms of our synthesized rain sound
before and after smoothing, which confirms the effectiveness
of our smoothing algorithm.

6 RESULTS AND DISCUSSIONS

We tested our method on various rainfall scenes at different
scales. All the experiments were conducted with the same
hardware: Intel Core i5-4460 3.20 GHz CPU, Nvidia GeForce
GTX 745 GPU, 8 GB RAM. In our results, we synthesized
all the BR-sounds at a sampling rate of 44,100 Hz and the
animation frame rate is 30fps. Our implementation made use
of Matlab to load and play sounds. All the rain scene models
were constructed by POPs system in Houdini FX 15. The
values of the parameters are given in Table 2. We refer the
reader to the accompanying video for all our animation and
audio results.

ACM Trans. Graph., Vol. 38, No. 4, Article 123. Publication date: July 2019.



Physically-based Statistical Simulation of Rain Sound • 123:11

(a)

(b)

Fig. 9. Comparison with state-of-the-art methods and recorded sound. (a) is the spectra comparison with [Verron and Drettakis 2012; Zita 2003]
and line charts of content-based descriptors. (b) is the spectra comparison with recorded sound and line charts of content-based descriptors. The
audio descriptors are loudness, spectral flatness, spectral centroid and energy, respectively.

6.1 Rainfall scenarios

First, we synthesized the rain sound for different rainfall
scenarios. In different rainfall animations, we change the
number of raindrops, position of listener and surface material
to validate the effectiveness of our method. All the sounds
were synthesized with and without the sound source activator
(SSA for short in Table 3). We compared the sound generated
by our approach to the sound synthesized by a purely physical
model [Zita 2003] 1, and the results are shown in Table 3
which demonstrate that our method is about 40∼100× faster.

Different numbers of raindrops. Figure 8(a) presents
two frames with different numbers of raindrops. From the
spectra on the right side, we can see that the sound results
are different when the number of raindrops changes. In this
scenario, due to the small domain size, there are only 9 sound
sources in total, so the effect of the sound source activator
is less significant. From the three rows of “DNR” in Table 3
(1k-5k raindrops for light rain, 5k-10k raindrops for medium
rain and 10k-15k raindrops for heavy rain), we can observe
that the rain intensity (number of raindrops) has no effects
on the efficiency of our algorithm, but obviously affects Zita’s
method [2003]. This is one advantage of our BR-sound bank:
the computational cost is independent of the precipitation
intensity, as long as the domain size remains unchanged, since
we only need to select different BR-sounds with the number
of raindrops simply used as one of the parameters.
Different locations of the listener. Figures 8(b)- 8(d)

show frames of a video with the listener (camera) in different
positions. In each group, the right column is the corresponding

1Since our method is sequential, we only compare with the sequential
method in [Zita 2003].

spectrogram. From the frequency distribution of the spectro-
gram, we can observe the difference of sound when the camera
is in different positions. For a liquid surface (Figure 8(b)),
when the listener is close to the surface of a lake, the low
frequency sound caused by bubble vibration is more notice-
able. However, for a solid surface with the same material
(Figure 8(c)), the change in the listener’s position has little
effect on the resulting rain sound. When the listener walks
from indoors to outdoors (Figure 8(d)), the change of rain
sound is obvious due to the occlusion effects of the buildings in
the experiment. In these cases, our sound synthesis is around
90× faster than [Zita 2003] owing to that the sound source
activator effectively reduces the simulation cost.

Different surface materials. A rainfall scenario with
a cloth canopy and metal street lamps is explored in our
experiment (see Figure 1). As shown in Figure 1 (see point A
on the bottom row), when the listener is below the canopy,
although there is only little information about the canopy
(top left corner), we can clearly perceive how our position
affects the change of rain sound. Moreover, we compared
the sound results with and without the MSTs, and experi-
ments demonstrate that the exploration of material sound
can greatly enhance users’ perceptions of scenes.

6.2 Comparison and Validation

Comparison with the state-of-the-arts: Although Zita
[2003] provided a fine solution for rain sound synthesis, it only
takes into account the impact sound generated by raindrops
and the surface. However, only considering the impact sound
would make the synthesized sound resemble white noise. The
method in [Verron and Drettakis 2012] is a granular synthesis
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Fig. 10. Result comparison among different decomposition algorithms. From (a) to (c), the corresponding algorithms are VMD, LMD, and EMD,
respectively. We mark the frequency center with the dotted lines.

Fig. 11. Comparison of sound results before and after smoothing. The green waveform is the result without smoothing and the yellow waveform is
the result after smoothing. The red box on the right shows the magnified view for comparing the details.

approach with the composition of four rain sound atoms,
and thus its results may contain some noticeable traces of
stitching.

To validate the sound effects, we compared the synthesized
sound generated by [Verron and Drettakis 2012; Zita 2003]
with our work. In order to visualize the differences among
the sounds, we calculate the content-based descriptors for
comparison of various aspects of the sound. Audio descriptors
are calculated through the method proposed in [Schwarz and
Schnell 2010]. In the spectral flatness line chart, we find that
since the method of [Verron and Drettakis 2012] is particle-
based, the spectral flatness value is lower which varies more
widely than physically-based methods. In the energy line
chart, we observe that the energy value of Zita’s result is
higher and the change of energy 2 is steeper, so the resulting
sounds are closer to white noise.
Comparison with natural rain sound: To verify our

experimental results, we also compared the synthesized rain
sounds with the natural rain sounds from a website 3. Since
the waveforms of the white noise and the rain sound are
similar, it is difficult to compare the differences from the
spectra as shown in Figure 9(b). In order to compare the
difference between the timbre of the sounds, we again use the
audio descriptors calculated through the method proposed in
[Schwarz and Schnell 2010]. It can be observed from the line
charts that the descriptors share similar distributions. Rain
sound recording is often mixed with some other noises, such
as wind and thunder, so our synthesized result has a higher
loudness and energy value.

2We calculated noise part energy which estimates the power of the
noise (non-harmonic) part of the signal. More details can be found in
[Schwarz and Schnell 2010].
3www.audioblocks.com

Validation on the effect of decomposition: To find
the most suitable decomposition algorithm for rain sound,
we decompose the same rain sound recording with three
decomposition algorithms (EMD, LMD, VMD). The results
are illustrated in Figure 10, where we show the top five sub-
signals and the corresponding frequency distributions. It is
clear that the frequency distributions of sub-signals based on
LMD and EMD are overlapping. Thus, VMD is more suitable
for rain sound decomposition.

Validation on the effect of smoothing: Figure 11
shows the sound waveforms before and after smoothing, where
the green waveform is the result before smoothing and the
yellow waveform is the smoothed result of the green waveform.
For clarity, we magnify the sound in the corresponding color
box. It can be seen that the acoustic wave discontinuity has
been effectively suppressed.

6.3 User study

To further assess the effectiveness of our approach, we designed
three perceptual user studies to evaluate the quality of the
synthesized results. We invited 50 participants (24 females
and 26 males) with ages ranging from 18 to 50. Among them,
10 have specialized computer graphics knowledge and all of
them have normal hearing.

The first experiment is to evaluate the similarity of synthe-
sized sound and natural rain sound. In this experiment, the
participant is shown a series of audio clips. The collections
consist of three synthesized samples from our method, three
audio clips from Zita’s method and four real audio clips that
are recordings of natural rain. In the experiment, one clip
is shown per page and the participant is asked to rate 0 or
1 for each clip, where 1 is labeled “natural rain sound” and
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Fig. 12. User survey results of the first experiment. The error bars are
at 95% confidential level.

Fig. 13. User survey results of the third experiment. The numbers
in each box represent score and the highest score for each column is
marked in orange.

0 “synthesized rain sound”. In addition, participants will not
be told the number of natural rain sounds and synthesized
rain sounds so that the participant can give all 0 or all 1
scores. Figure 12 presents the sum of the scores of the ten
audio clips. It can be seen that over 80% of participants think
the synthesized rain sounds by our method are natural. In
fact, all of our scores are higher than Zita’s scores, which
indicates that the rain sound synthesized by our method is
more realistic than that synthesized by Zita’s method.

The second experiment is to evaluate the quality of sound re-
sults which are synthesized by Zita’s method and our method,
respectively. In the experiment, we present five pairs of audio
clips. Each page contains the audio from one of our demo
scenarios and the audio synthesized by Zita’s method with the
same parameter interval. For every pair of audio clips, a paired
T-test is conducted to evaluate the difference between the
synthesized rain sound by Zita’s method and the synthesized
rain sound by our method. In each scenario, the participant
is asked three questions: “Are these two audio/video clips the
same or different?”, “Which audio/video clip do you prefer?”
and “How strongly do you feel about this preference?” The
score for each clip is on a scale from 1 to 10, where 1 is labeled
“Do not prefer” and 10 “Very much prefer”.

A paired T-test is performed on these scores to check if 𝜇𝑎

is significantly greater than 𝜇𝑏 using the following hypotheses
𝐻0 : 𝜇𝑎≤𝜇𝑏, 𝐻1 : 𝜇𝑎>𝜇𝑏, where 𝜇𝑎 represents the score of
the synthesized sound by our method, while 𝜇𝑏 represents the
score of the synthesized sound by Zita’s method. Hypothesis
𝐻0 means that Zita’s sound results have a higher score. Table 4
shows all 5 paired T-test results. Note that all 𝑃 values are
less than 0.0005, and all 𝑇 values are higher than 1.6839,
indicating that 𝐻0 is rejected with statistical significance

while 𝐻1 is accepted. This concludes that our result achieves
a significantly better sound effect than Zita’s result.

The third experiment is used to verify the synchronization
of sound and animation. To verify the effectiveness of our
mapping function, there are three scenes in the experimen-
t. In different scenarios, the number of raindrops and the
change of listener position are different. We use the three
synthesized rain sounds to dub three animations separately
and the volunteers are asked to rate the video with different
sounds on a scale from 1 to 10, where 1 is labeled as “Not
synchronized” and 10 “Very synchronous”. Figure 13 shows
the average score of the experiment and we mark the highest
score of each column in orange. It can be observed that the
animation clip and the audio clip whose names are the same
have the highest score, which means the subject can correctly
select the matching sounds and animations.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a novel physically-based statistical
method for generating rain sound, which allowed for a more
realistic simulation that varies with the location of a listener.
The two mechanisms in the raindrop model exhibited more
detailed visual correspondences. Moreover, we enriched the
impact sound on different materials with MSTs, which were
generated by a novel VMD-SV method. With the statistic
model, we generated a bank of clean sound clips (BR-sounds)
without the interference of environmental sounds, which can
be hard to avoid in recordings. We proposed a novel visual-to-
audio mapping scheme which drastically reduced simulation
cost. Our user study suggested that the perceived realism of
rain sounds synthesized by our approach is comparable to
recorded sound.

Although our rain sound model enables synthesizing natu-
ral rain sound, there are still some limitations. The example
guided MST generation may limit the category of sound.
Building sound models for material sounds is an interesting
direction to explore. Also, improving the simple assumptions
about spherical raindrops as mentioned in the modeling sec-
tion could also be considered for future work. Moreover, it
remains another future work to investigate how to accelerate
the sound synthesis for large scale dynamic environments. Per-
haps exploring parallel computing techniques such as GPU
(Graphics Processing Units) computing may further speed
up the simulation. Finally, finding overall contributions from
other environmental variables, such as the strength of wind,
on the sound of rain remains an open problem.
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Table 4. User survey results of the second experiment: audio synthesized by our method vs. audio synthesized by Zita’s method.

Scenarios Same Diff Prefer Zita’s Prefer Ours T value P value

soft rain 10% (5) 90% (45) 30% (15) 70% (35) 14.382 < 0.0005
middle rain 14% (7) 86% (43) 34% (17) 66% (33) 4.756 < 0.0005
heavy rain 16% (8) 84% (42) 24% (12) 76% (38) 6.789 < 0.0005
lake 2% (1) 98% (49) 14% (7) 86% (43) 4.213 < 0.0005
block 2% (1) 98% (49) 18% (9) 82% (41) 5.786 < 0.0005
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